Radiobiological description of the LET dependence of the cell survival of oxic and anoxic cells irradiated by carbon ions

نویسندگان

  • L. Antonovic
  • A. Brahme
  • Y. Furusawa
  • I. Toma-Dasu
چکیده

Light-ion radiation therapy against hypoxic tumors is highly curative due to reduced dependence on the presence of oxygen in the tumor at elevated linear energy transfer (LET) towards the Bragg peak. Clinical ion beams using spread-out Bragg peak (SOBP) are characterized by a wide spectrum of LET values. Accurate treatment optimization requires a method that can account for influence of the variation in response for a broad range of tumor hypoxia, absorbed doses and LETs. This paper presents a parameterization of the Repairable Conditionally-Repairable (RCR) cell survival model that can describe the survival of oxic and hypoxic cells over a wide range of LET values, and investigates the relationship between hypoxic radiation resistance and LET. The biological response model was tested by fitting cell survival data under oxic and anoxic conditions for V79 cells irradiated with LETs within the range of 30-500 keV/µm. The model provides good agreement with experimental cell survival data for the range of LET investigated, confirming the robustness of the parameterization method. This new version of the RCR model is suitable for describing the biological response of mixed populations of oxic and hypoxic cells and at the same time taking into account the distribution of doses and LETs in the incident beam and its variation with depth in tissue. The model offers a versatile tool for the selection of LET and dose required in the optimization of the therapeutic effect, without severely affecting normal tissue in realistic tumors presenting highly heterogeneous oxic and hypoxic regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of cancer stem-like cells in A549 cells after exposure to carbon ions and X-rays

Background: Cancer stem-like cells (CSCs) play a crucial role in the initiation, progression, and recurrence of cancer. Evidence indicates that the high linear energy transfer (LET) carbon ion beam is more effective against CSCs than the conventional X-ray beam. Carbon ion radiotherapy is considered as a promising cancer strategy, however, information about whether, or not, new CSCs are induced...

متن کامل

Radiobiological experiments for carbon ion prostate cancer therapy: Interplay of normal and tumor cells in co-culture and measurement of the oxygen enhancement ratio

Co-culture models are helpful to examine cell to cell interactions in vitro and to assess the cross-communication between two particular cell populations. Co-culture systems partially reflect the complex in vivo situation: in this study an in vitro co-culture model of prostate cancer cells (Dunning R-3327-AT-1) and small intestine cells (intestinal ep-ithelium cell line 6) of the rat was establ...

متن کامل

Damage Induction and Repair Processes in Chinese Hamster Cells and Normal Human Skin Fibroblasts Irradiated by Light Ions of Different Energies

For effective application of protons and ions in tumour radiotherapy is necessary understanding of the basic characteristics of radiobiological mechanism in individual cell. To study the cell inactivation mechanisms of various ions at different energies, damage induction and repair processes in hamster and human cell lines have been analyzed. Published survival data for Chinese hamster CHO-K1 c...

متن کامل

Interphase Death of Chinese Hamster Ovary Cells Exposed to Accelerated Heavy Ions

Introduction: Heavy ions are nucleus of elements of iron, argon, carbon and neon that all carry positive electrical charges. For these particles to be useful in radiotherapy they need to accelerated to high energy by more than thousand mega volts. Also the cosmic environment is considered to be a complicated mixture of highly energetic photons and heavy ions such as iron. Therefore, the health ...

متن کامل

Track detection on the cells exposed to high LET heavy-ions by CR-39 plastic and terminal deoxynucleotidyl transferase (TdT)

Background: The fatal effect of ionizing radiation on cells depends on Linear Energy Transfer (LET) level. The distribution of ionizing radiation is sparse and homogeneous for low LET radiations such as X or γ, but it is dense and concentrated for high LET radiation such as heavy-ions radiation. Material and Methods: Chinese hamster ovary cells (CHO-K1) were exposed to 4 Gy Fe-ion 2000 keV/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2013